EE 330 Lecture 21

- Bipolar Process

Spring 2024 Exam Schedule

Exam 1 Friday Feb 16
Exam 2 Friday March 8
Exam 3 Friday April 19
Final Exam Tuesday May 7 7:30 AM - 9:30 AM

Review from Last Lecture

Simplified Multi-Region Model

$$
\begin{aligned}
& I_{C}=J_{S} A_{E} E^{\frac{V_{B E}}{V_{t}}}\left(1+\frac{V_{C E}}{V_{A F}}\right) \\
& I_{B}=\frac{J_{S} A_{E}}{\beta} e^{\frac{V_{B E}}{V_{t}}} \quad V_{t}=\frac{k T}{q}
\end{aligned}
$$

Forward Active
$V_{B E}=0.7 \mathrm{~V}$
Saturation
$V_{C E}=0.2 \mathrm{~V}$
$I_{C}=I_{B}=0$
Cutoff

- This is a piecewise model suitable for analytical calculations
- Can easily extend to reverse active mode but of little use
- Still need conditions for operating in the 3 regions

Simplified Multi-Region Model

A small portion of the operating region is missed with this model but seldom operate in the missing region

Review from Last Lecture

Further Simplified Multi-Region dc Model

Equivalent Further Simplified Multi-Region Model

$$
\begin{aligned}
& I_{C}=\beta I_{B} \\
& V_{B E}=0.6 \mathrm{~V} \\
& V_{t}=\frac{k T}{q} \\
& V_{B E}=0.7 \mathrm{~V} \\
& V_{C E}=0.2 \mathrm{~V} \\
& I_{C}<\beta I_{B} \\
& I_{C}=I_{B}=0 \\
& V_{B E}<0 \\
& V_{B C}<0 \\
& V_{B E}>0.4 V \\
& V_{B C}<0 \\
& \text { Saturation } \\
& \text { Cutoff }
\end{aligned}
$$

A small portion of the operating region is missed with this model but seldom operate in the missing region

Circuit Examples:

Verification of state and model of Q_{0} and Q_{1} :

Circuit Examples:

$$
\text { Determine } V_{\text {OUT }} \text {. Assume } A_{E 0}=5 \mu \mathrm{~m}^{2} \quad A_{E 1}=10 \mu \mathrm{~m}^{2}
$$

$$
\begin{aligned}
& J_{\mathrm{S}}=1 \mathrm{fA} / \mu \mathrm{m}^{2} \quad \beta=100 \quad \mathrm{~V}_{\mathrm{AF}}=200 \mathrm{~V} \\
& \mathrm{~V}_{\text {OUT }}=12 \mathrm{~V}-4.56 \mathrm{~mA} \bullet 2 \mathrm{~K}=2.88 \mathrm{~V}
\end{aligned}
$$

Observe:
Solution did not depend on $\mathrm{J}_{\mathrm{S}}, \mathrm{V}_{\mathrm{AF}}$, and only on assumption that β is large!

Current in transistor pair Q_{0} and Q_{1} have an interesting relationship

This $\mathrm{Q}_{0} \mathrm{Q}_{1}$ interconnection is called a Current Mirror

Circuit Examples:

Current Mirror

If Q_{1} and Q_{2} are in Forward Active Region and β is large

$$
\left\{\begin{array}{l}
\mathrm{I}_{0}=\mathrm{J}_{\mathrm{S}} \mathrm{~A}_{\mathrm{E} 0} \mathrm{e}^{\frac{\mathrm{V}_{\mathrm{BE}}}{\mathrm{~V}_{\mathrm{t}}}} \\
\mathrm{I}_{1}=\mathrm{J}_{\mathrm{S}} \mathrm{~A}_{\mathrm{EI} 1} \mathrm{e}^{\frac{\mathrm{V}_{\mathrm{E} 2}}{\mathrm{~V}_{\mathrm{t}}}}
\end{array} \mathrm{I}_{1}=\frac{\mathrm{A}_{\mathrm{E} 1}}{\mathrm{~A}_{\mathrm{E} 2}} \mathrm{I}_{0}\right.
$$

The Current Mirror is a very useful circuit !
Current Mirror can also be made with pnp transistors !

$$
\mathrm{I}_{\mathrm{pl} 1}=\frac{\mathrm{A}_{\mathrm{Ep} 1}}{\mathrm{~A}_{\mathrm{Ep} 2}} \mathrm{I}_{\mathrm{p} 0}
$$

Circuit Examples:

Current Mirror

If M_{0} and M_{1} are in Saturation

$$
\begin{cases}\mathrm{I}_{0}=\frac{\mu \mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{0}}{2 \mathrm{~L}_{0}}\left(\mathrm{~V}_{\mathrm{GS} 0}-\mathrm{V}_{\mathrm{TH}}\right)^{2} \\ \mathrm{I}_{1}=\frac{\mu \mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{1}}{2 \mathrm{~L}_{1}}\left(\mathrm{~V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{TH}}\right)^{2} & \text { Since } \mathrm{V}_{\mathrm{GSO}}=\mathrm{V}_{\mathrm{GS} 1} \\ \mathrm{I}_{1}=\frac{\mathrm{W}_{1}}{\mathrm{~L}_{1}} \frac{\mathrm{~L}_{0}}{\mathrm{~W}_{0}} \mathrm{I}_{0}\end{cases}
$$

The is also a Current Mirror
The Current Mirror is a very useful circuit ! Current Mirror can also be made with p-channel transistors !

$$
\mathrm{I}_{\mathrm{p} 1}=\frac{\mathrm{W}_{\mathrm{P} 1}}{\mathrm{~L}_{\mathrm{P} 1}} \frac{\mathrm{~L}_{\mathrm{P} 0}}{\mathrm{~W}_{\mathrm{P} 0}} \mathrm{I}_{\mathrm{p} 0}
$$

Bipolar Process Description

p-substrate epi

Components Shown

- Vertical npn BJT
- Lateral pnp BJT
- JFET
- Diffusion Resistor
- Diode (and varactor)

Note: Features intentionally not to scale to make it easier to convey more information on small figures

- Much processing equipment is same as used for MOS processes so similar minimum-sized features can be made
- But will see that there are some fundamental issues that typically make bipolar circuits large

TABLE 2C. 1

Process scenario of major process steps in typical bipolar process ${ }^{a}$

1. Clean wafer (p-type)
2. GROW THIN OXIDE
3. Apply photoresist
4. PATTERN n^{+}BURIED LAYER
(MASK \#1)
5. Develop photoresist
6. DEPOSITION AND DIFFUSION OF n-BURIED LAYER
7. Strip photoresist
8. Strip oxide
9. GROW EPITAXIAL LAYER (n-type)
10. Grow oxide
11. Apply photoresist
12. PATTERN p^{+}ISOLATION REGIONS
13. Develop photoresist
14. Etch oxide
15. DEPOSITION AND DIFFUSION OF p^{+}ISOLATION
16. Strip photoresist
17. Grow oxide

Optional high-resistance p-diffusion
A. 1 Apply photoresist
A. 2 PATTERN p-RESISTORS
(MASK \#A)
A. 3 Develop photoresist
A. 4 Etch oxide
A. 5 DEPOSITION AND DIFFUSION OF p-RESISTORS
A. 6 Strip photoresist
A. 7 Grow oxide
18. Apply photoresist
19. PATTERN BASE REGIONS
20. Develop photoresist
21. Etch oxide
22. DEPOSITION AND DIFFUSION OF p-TYPE BASE
23. Strip photoresist
24. Grow oxide
25. Apply photoresist
26. PATTERN n-TYPE EMITTER REGIONS
27. Develop photoresist
28. Etch Oxide
29. n^{+}DEPOSITION AND DIFFUSION
30. Strip photoresist
31. Grow oxide
32. Apply photoresist
33. PATTERN CONTACT OPENINGS
(MASK \#5)
34. Develop photoresist
35. Etch oxide
36. Strip Photoresist
37. APPLY METAL
38. Apply photoresist
39. PATTERN METAL
40. Develop photoresist
41. ETCH METAL
42. Strip photoresist
43. APPLY PASSIVATION
44. Apply photoresist
45. PATTERN PAD OPENINGS
(MASK \#7)
46. Develop photoresist
47. Etch passivation
48. Strip photoresist
49. ASSEMBLE, PACKAGE, AND TEST

- Small number of masks
- Most not critical alignment / size

TABLE 2C. 2
Design rules for a typical bipolar process ($\lambda=2.5 \mu$)
(See Table 2C. 3 in color plates for graphical interpretation)

Dimension

1. n^{+}buried collector diffusion (Yellow, Mask \#1)
1.1 Width 3
1.2 Overlap of p-base diffusion (for vertical npn) 2λ
1.3 Overlap of n^{+}emitter diffusion (for collector contact of vertical npn)
2λ
1.4 Overlap of p-base diffusion (for collector and emitter of lateral pnp) $\quad 2 \lambda$
1.5 Overlap of n^{+}emitter diffusion (for base contact of lateral pnp) 2λ
2. Isolation diffusion (Orange, Mask \#2)
2.1 Width
2.2 Spacing
2.3 Distance to n^{+}buried collector
3. p-base diffusion (Brown, Mask \#3)
3.1 Width
3.2 Spacing
3.3 Distance to isolation diffusion
3.4 Width (resistor)
3.5 Spacing (as resistor)
3λ
4. n^{+}emitter diffusion (Green, Mask \#4)
4.1 Width
3 λ
4.2 Spacing 3 λ
4.3 p-base diffusion overlap of n^{+}emitter diffusion (emitter in base)
4.4 Spacing to isolation diffusion (for collector contact)
4.5 Spacing to p -base diffusion (for base contact of lateral pnp)
4.6 Spacing to p-base diffusion (for collector contact of vertical npn)

- Note some features have very large design rules
- Will discuss implication of this later

5. Contact (Black, Mask \#5)
5.1 Size (exactly) $\quad 4 \lambda \times 4 \lambda$
5.2 Spacing 2λ
5.3 Metal overlap of contact λ
$5.4 \mathrm{n}^{+}$emitter diffusion overlap of contact 2λ
5.5 p -base diffusion overlap of contact 2λ
5.6 p -base to n^{+}emitter $\quad 3 \lambda$
5.7 Spacing to isolation diffusion 4λ
6. Metalization (Blue, Mask \#6)
6.1 Width 2λ
6.2 Spacing 2λ
6.3 Bonding pad size
6.4 Probe pad size
6.5 Bonding pad separation
$100 \mu \times 100 \mu$
-50μ
6.6 Bonding to probe pad 30μ
6.7 Probe pad separation $\quad 30 \mu$
6.8 Pad to circuitry
6.9 Maximum current density
40μ
. Passivation (Purple, Mask \#7)
7.1 Minimum bonding pad opening $\quad 90 \mu \times 90 \mu$
7.2 Minimum probe pad opening
7. Contact (Black, Mask \#5)
5.1 Size (exactly)
5.2 Spacing
5.3 Metal overlap of contact
$5.4 \mathrm{n}^{+}$emitter diffusion overlap of contact
2λ
5.5 p -base diffusion overlap of contact
2λ
e< - hanc. .n - + amitran

Rule	Description	Lambda		
6.1	Exact contact size	2×2	2×2	2×2
6.2	Minimum active overlap	1.5	1.5	1.5
6.3	Minimum contact spacing	2	3	4
6.4	Minimum spacing to gate of transistor	2	2	2

2λ
2λ
$100 \mu \times 100 \mu$ $75 \mu \times 75 \mu$ 50μ
30μ
30μ
40μ
$0.8 \mathrm{~mA} / \mu$ width
$90 \mu \times 90 \mu$
$65 \mu \times 65 \mu$

TABLE 2C. 4
Process parameters for a typical bipolar process ${ }^{\boldsymbol{a}}$

Parameter	Typical	Tolerance ${ }^{\text {b }}$	Units
Ebers-Moll model parameters			
β_{F} (forward β)			
npn -vertical	100	50 to 200	
pnp-lateral			
(at $I_{\mathrm{C}}=500 \mu \mathrm{~A}$)	10	$\pm 20 \%$	
(at $I_{C}=200 \mu \mathrm{~A}$)	6	$\pm 20 \%$	
β_{R} (reverse β)			
npn-vertical	1.5	± 0.5	
pnp-lateral			
(at $I_{\mathrm{C}}=500 \mu \mathrm{~A}$)	5	$\pm 20 \%$	
(at $I_{\mathrm{C}}=200 \mu \mathrm{~A}$)	3	$\pm 20 \%$	
$V_{\text {AF }}$ (forward Early voltage)			
npn-vertical	100	$\pm 30 \%$	V
pnp-lateral	150	$\pm 30 \%$	V
$V_{A R}$ (reverse Early voltage)			
npn-vertical	150	$\pm 30 \%$	V
pnp-lateral	150	$\pm 30 \%$	V
J_{3} (saturation current density)			
npn-vertical	2.6×10^{-7}	-50% to $+100 \%$	pA / μ^{2}
pnp-lateral	1.3×10^{-5}	-50% to $+100 \%$	pA / μ emitter perimeter

Parameter	Typical	Tolerance ${ }^{b}$	Units	
	Doping			
n^{+}emitter	$?$	10^{4}	$\pm 30 \%$	$10^{16} / \mathrm{cm}^{3}$
p-base		10^{5}		$\pm 20 \%$
\quad Surface	$?$	1	$\pm 20 \%$	$10^{16} / \mathrm{cm}^{3}$
Junction	$?$	0.3	$\pm 20 \%$	$10^{16} / \mathrm{cm}^{3}$
Epitaxial layer		0.08	$\pm 25 \%$	$10^{16} / \mathrm{cm}^{3}$
Substrate				$10^{16} / \mathrm{cm}^{3}$

Physical feature size

Diffusion depth			
$\mathrm{n}+$ emitter diffusion	1.3	$\pm 5 \%$	μ
p-base diffusion	2.6	$\pm 5 \%$	μ
p-resistive diffusion	0.3	$\pm 5 \%$	μ
n-epitaxial layer	10.4	$\pm 5 \%$	μ
n^{+}buried collector diffusion			
\quad Into epitaxial	3.9	$\pm 5 \%$	μ
\quad Into substrate	7.8	$\pm 5 \%$	μ
Oxide thickness			μ
\quad Metal to epitaxial	1.4	$\pm 30 \%$	μ
Metal to p-base	0.65	$\pm 30 \%$	μ
\quad Metal to n^{+}emitter	0.4	$\pm 30 \%$	

Capacitances

Metal to epitaxial	0.022	$\pm 30 \%$	fF/ $/{ }^{2}$
Metal to p-base diffusion	0.045	$\pm 30 \%$	fF / μ^{2}
Metal to n^{+}emitter diffusion	0.078	$\pm 30 \%$	ff/ $/{ }^{2}$
n^{+}buried collector to substrate (junction, bottom)	0.062	$\pm 30 \%$	fF / μ^{2}
Epitaxial to substrate (junction, bottom)	0.062	$\pm 30 \%$	fF/ $/{ }^{2}$
Epitaxial to substrate (junction, sidewall)	1.6	$\pm 30 \%$	fF / μ perimeter
Epitaxial to p-base diffusion (junction, bottom)	0.14	$\pm 30 \%$	fF/ $/{ }^{2}$
Epitaxial to p-base diffusion (junction, sidewall)	7.9	$\pm 30 \%$	fF / μ perimeter
p -base diffusion to n^{+}emitter diffusion (junction, bottom)	0.78	$\pm 30 \%$	fF / μ^{2}
p-base diffusion to n^{+}emitter diffusion (junction, sidewall)	3.1	$\pm 30 \%$	fF / μ perimeter

Parameter	Typical	Tolerance ${ }^{\text {b }}$	Units
Resistance and resistivity			
Substrate resistivity	16	$\pm 25 \%$	$\Omega \cdot \mathrm{cm}$
n^{+}buried collector diffusion	17	$\pm 35 \%$	Ω / \square
Epitaxial layer	1.6	$\pm 20 \%$	$\Omega \cdot \mathrm{cm}$
p-base diffusion	160	$\pm 20 \%$	Ω / \square
p-resistive diffusion (optional)	1500	$\pm 40 \%$	Ω / \square
n^{+}emitter diffusion	4.5	$\pm 30 \%$	Ω / \square
Metal	0.003		Ω / \square
Contacts ($3 \mu \times 3 \mu$)	<4		Ω
Metal-n ${ }^{+}$emitter (contact plus series resistance to BE junction)	<1		Ω
Metal-p-base ${ }^{c}$ (contact plus series resistance)	70		Ω
Metal-Epitaxial ${ }^{d}$ (contact plus series resistance to BC junction)	120		Ω

Breakdown voltages, leakage currents, migration currents, and operating conditions

Reverse breakdown voltages			
n^{+}emitter to p-base	6.9	$\pm 50 \mathrm{mV}$	V
p-base to epitaxial	70	± 10	V
\quad Epitaxial to substrate	>80		V
Maximum operating voltage	40	V	
Substrate leakage current	0.16	fA / μ^{2}	
Maximum metal current density 0.8 $\mathrm{~mA} / \mu$ width Maximum device operating temperature (design) 125 ${ }^{\circ} \mathrm{C}$ Maximum device operating temperature (physical) 225 ${ }^{\circ} \mathrm{C}$			

SPICE model parameters of typical bipolar process

Parameter	V,b,c	Vertical npn	Lateral pnp

Recall:

Simplified Multi-Region Model

"Forward" Regions : $\beta=\beta_{F}$

$$
\begin{aligned}
& I_{C}=J_{S} A_{E} e^{\frac{V_{B E}}{V_{t}}}\left(1+\frac{V_{C E}}{V_{A F}}\right) \\
& I_{B}=\frac{J_{S} A_{E}}{\beta} e^{\frac{V_{B E}}{V_{t}}}
\end{aligned}
$$

$$
V_{B E}=0.7 \mathrm{~V}
$$

$$
V_{C E}^{D E}=0.2 V
$$

$$
I_{C}=I_{B}=0
$$

Conditions $V_{B E}>0.4 V \quad V_{B C}<0$	Forward Active
$\mathrm{I}_{\mathrm{C}}<\beta \mathrm{I}_{\mathrm{B}}$	Saturation
$\mathrm{V}_{\mathrm{BE}}<0 \quad \mathrm{~V}_{\mathrm{BC}}<0$	Cutoff

Process Parameters: $\left\{J_{S}, \beta, V_{A F}\right\} \quad V_{t}=\frac{k T}{q} \quad$ Design Parameters: $\left\{A_{E}\right\}$

- Process parameters highly process dependent
- J_{s} highly temperature dependent as well, β modestly temperature dependent
- This model is dependent only upon emitter area, independent of base and collector area !
- Currents scale linearly with A_{E} and not dependent upon shape of emitter
- A small portion of the operating region is missed with this model but seldom operate in the missing region
${ }^{a}$ Parameters are defined in Chapters 3 and 4.
${ }^{b}$ Some of these Gummel-Poon parameters differ considerably from those given in Table 2C.4. They have been obtained from curve fitting and should give good results with computer simulations. The parameters of Table 2C. 4 should be used for hand analysis.
${ }^{c}$ Parameters that are strongly area-dependent are based upon an npn emitter area of $390 \mu^{2}$ and perimeter of 80μ, a base area of $2200 \mu^{2}$ and perimeter of 200μ, and a collector area of $10.500 \mu^{2}$ and perimeter of 425μ. The lateral pno has rectangular collectors and emitters spaced 10μ apart with areas of 230 μ^{2} and perimeters of 60μ. The base area of the pnp is $7400 \mu^{2}$ and the base perimeter is 345μ.
${ }^{d}$ CIS is set to zero for the lateral transistor because it is essentially nonexistent. The parasitic capacitance from base to substrate, which totals 1.0 pF for this device, must be added externally to the BJT.
- In contrast to the MOSFET where process parameters are independent of geometry, the bipolar transistor model is for a specific transistor !
- Area emitter factor is used to model other devices
- Often multiple specific device models are given and these devices are used directly
- Often designer can not arbitrarily set A_{E} but rather must use parallel combinations of specific devices and layouts

Layer Mappings

\square	n^{+}buried collector isolation diffusion $\left(\mathrm{p}^{+}\right)$ p -base diffusion
\square	n^{+}emitter
\square	contact metal passivation opening

Notes:

- passivation opening for contacts not shown
- isolation diffusion intentionally not shown to scale

Dimmed features with $\mathrm{A}-\mathrm{A}^{\prime}$ and $\mathrm{B}-\mathrm{B}^{\prime}$ cross sections

Diode (capacitor)

Detailed Description of First Photolithographic Steps Only

- Top View
- Cross-Section View

Mask Numbering and Mappings

Mask 1
Mask 2
Mask 3
Mask 4
Mask 5
Mask 6
Mask 7
\qquad
\qquad
\qquad
\qquad

\qquad
n^{+}buried collector isolation diffusion (p^{+})
p-base diffusion
n^{+}emitter
contact
metal
passivation opening

Notes:

- passivation opening for contacts not shown
- isolation diffusion intentionally not shown to scale

Mask 1: $\quad \mathrm{n}^{+}$buried collector

Develop

\|.|.|.|.|.|.|.|.|.|.|.|

A-A' Section

B-B' Section

Implant

$\downarrow \downarrow \downarrow$

A-A' Section

B-B' Section

Strip Photoresist

A-A' Section

B-B' Section

p-substrate

n^{+}buried collector

n^{+}buried collector

Grow Epitaxial Layer

A-A' Section

B-B' Section

Grow Epitaxial Layer

Mask Numbering and Mappings

Mask 1
Mask 2
Mask 3
Mask 4
Mask 5
Mask 6
Mask 7
\qquad
\qquad
\longrightarrow
\qquad
\qquad
\qquad
n^{+}buried collector isolation diffusion (p^{+})
p-base diffusion
n^{+}emitter
contact
metal
passivation opening

Notes:

- passivation opening for contacts not shown
- isolation diffusion intentionally not shown to scale

Isolation Diffusion

Mask 2: Isolation Deposition/Diffusion

Isolation Deposition/Diffusion

A-A' Section

Isolation Diffusion

Have created 5 "islands" of n material on top of p - substrate

Mask Numbering and Mappings

Mask 1
Mask 2
Mask 3
Mask 4
Mask 5
Mask 6
Mask 7
\qquad
\qquad
\longrightarrow
\qquad
\longrightarrow
\qquad
n^{+}buried collector isolation diffusion (p^{+})
p-base diffusion
n^{+}emitter
contact
metal
passivation opening

Notes:

- passivation opening for contacts not shown
- isolation diffusion intentionally not shown to scale

p-base diffusion

Mask 3: p-base diffusion

p-base Diffusion

- Photoresist present but not shown
- Deposition and diffusion combined in slides

A-A' Section

B-B' Section

p-base Diffusion

A 4

Mask Numbering and Mappings

Mask 1
Mask 2
Mask 3
Mask 4
Mask 5
Mask 6
Mask 7
\qquad
\qquad
\longrightarrow
\qquad
\longrightarrow
\qquad
n^{+}buried collector isolation diffusion (p^{+})
p-base diffusion
n^{+}emitter
contact
metal
passivation opening

Notes:

- passivation opening for contacts not shown
- isolation diffusion intentionally not shown to scale

Mask 4: n^{+}emitter diffusion

\mathbf{n}^{+}emitter Diffusion

- Photoresist present but not shown
- Deposition and diffusion combined in slides

A-A' Section

B-B' Section

Emitter diffusion typically leaves only thin base area underneath

\mathbf{n}^{+}emitter Diffusion

A
 \dagger

Oxidation

A-A' Section

B-B' Section

Oxidation

Mask Numbering and Mappings

Mask 1
Mask 2
Mask 3
Mask 4
Mask 5
Mask 6
Mask 7
\qquad
\qquad
\longrightarrow
\qquad
\longrightarrow
\qquad
n^{+}buried collector isolation diffusion (p^{+})
p-base diffusion
n^{+}emitter
contact
metal
passivation opening

Notes:

- passivation opening for contacts not shown
- isolation diffusion intentionally not shown to scale

Mask 5: contacts

Contact Openings

- Deposition and diffusion combined in slides

A-A' Section

Contact Openings

Mask Numbering and Mappings

Mask 1
Mask 2
Mask 3
Mask 4
Mask 5
Mask 6
Mask 7
\qquad
\qquad
\longrightarrow
\qquad
\qquad
n^{+}buried collector isolation diffusion (p^{+})
p-base diffusion
n^{+}emitter
contact
metal
passivation opening

Notes:

- passivation opening for contacts not shown
- isolation diffusion intentionally not shown to scale

Mask 6: metal
\square

Metalization

-

A-A' Section

B-B' Section

Pattern Metal

A-A' Section

B-B' Section

B-B' Section

B-B' Section

Diode (capacitor)

Mask Numbering and Mappings

Mask 1
Mask 2
Mask 3
Mask 4
Mask 5
Mask 6
Mask 7
\qquad
\qquad
\longrightarrow
\qquad
\qquad
\qquad
n^{+}buried collector isolation diffusion (p^{+})
p-base diffusion
n^{+}emitter
contact
metal
passivation opening

Notes:

- passivation opening for contacts not shown
- isolation diffusion intentionally not shown to scale

Pad and Pad Opening

p-substrate
Epitaxial Layer
Oxidation
Metalization
Protective Layer
Pad Opening
Mask
Pad Opening

The vertical npn transistor

- Emitter area only geometric parameter that appears in basic device model!
- B and C areas large to get top contact to these regions
- Transistor much larger than emitter
- Multiple-emitter devices often used (TTL Logic) and don't significantly increase area
- Multiple B and C contacts often used (and multiple E contacts as well if A_{E} large)

The vertical npn transistor

Single-emitter and Double-Emitter Transistor
Base and Collector are shared

Quirks in modeling the BJT

${ }^{a}$ Parameters are defined in Chapters 3 and 4 .
${ }^{b}$ Some of these Gummel-Poon parameters differ considerably from those given in Table 2C.4. They have been obtained from curve fitting and should give good results with computer simulations. The parameters of Table 2C. 4 should be used for hand analysis.
${ }^{c}$ Parameters that are strongly area-dependent are based upon an npn emitter area of $390 \mu^{2}$ and perimeter of 80μ, a base area of $2200 \mu^{2}$ and perimeter of 200μ, and a collector area of $10,500 \mu^{2}$ and perimeter of 425μ. The lateral pap has rectangular collectors and emitters spaced 10μ apart with areas of 230 μ^{2} and perimeters of 60μ. The base area of the pnp is $7400 \mu^{2}$ and the base penimeter is 345μ.
${ }^{d}$ CIS is set to zero for the lateral transistor because it is essentially nonexistent. The parasitic capacitance from base to substrate, which totals 1.0 pF for this device, must be added externally to the BJT.

- In contrast to the MOSFET where process parameters are independent of geometry, the bipolar transistor model is for a specific transistor !
- Area emitter factor is used to model other devices
- Often multiple specific device models are given and these devices are used directly
- Often designer can not arbitrarily set A_{E} but rather must use parallel combinations of specific devices and layouts

A challenge in modeling the BJT

Top View of Vertical npn

Cross-Sectional View

A challenge in modeling the BJT

$$
\begin{aligned}
& \underset{\mathrm{I}_{\mathrm{C} 1}=\frac{\mathrm{A}_{\mathrm{E}}}{7} \mathrm{~J}_{\mathrm{S}} \mathrm{e}^{\frac{\mathrm{V}_{\mathrm{EE}}}{\mathrm{~V}_{1}}}}{\mathrm{~A}} \underset{\mathrm{I}}{\mathrm{I}}
\end{aligned}
$$

$$
\begin{aligned}
& I_{C}=\sum_{i=1}^{7} \frac{A_{E}}{7} J_{S} e^{\frac{V_{E E}}{V_{t}}}=A_{E} J_{S} e^{\frac{V_{E E}}{V_{t}}}
\end{aligned}
$$

This looks consistent but ...

A challenge in modeling the BJT

$$
\begin{aligned}
& I_{C}=\sum_{i=1}^{7} \frac{\mathrm{~A}_{\mathrm{E}}}{7} \mathrm{~J}_{\mathrm{S}} \mathrm{e}^{\frac{\mathrm{V}_{\mathrm{BE}}}{\mathrm{~V}_{\mathrm{t}}}}=\mathrm{A}_{\mathrm{E}} \mathrm{~J}_{\mathrm{S}} \mathrm{e}^{\frac{\mathrm{V}_{\mathrm{BE}}}{\mathrm{~V}_{\mathrm{t}}}}
\end{aligned}
$$

This looks consistent but ...
consider an individual slice

Lateral flow of base current causes a drop in base voltage across the base region

$$
V_{\mathrm{BRk}} \neq V_{\mathrm{BLk}} \quad I_{\mathrm{Ck}}=\frac{\mathrm{A}_{\mathrm{E}}}{7} \mathrm{~J}_{\mathrm{S}} \mathrm{e}^{\frac{V_{\mathrm{BEk}}}{V_{\mathrm{t}}}}
$$

What is $\mathrm{V}_{\mathrm{BEk}}$?

A challenge in modeling the BJT

This looks consistent but ...

$$
I_{C}=\sum_{i=1}^{7} \frac{\mathrm{~A}_{E}}{7} \mathrm{~J}_{\mathrm{S}} \mathrm{e}^{\frac{\mathrm{V}_{\mathrm{BE}}}{V_{t}}}=\mathrm{A}_{\mathrm{E}} \mathrm{~J}_{\mathrm{S}} \mathrm{e}^{\frac{\mathrm{V}_{\mathrm{BE}}}{\mathrm{~V}_{\mathrm{t}}}}
$$

- Lateral flow of base current causes a drop in base voltage across the base region
- And that drop differs from one slice to the next
- So $V_{B E}$ is not fixed across the slices
- Since current is exponentially related to V_{BE}, affects can be significant
- Termed base spreading resistance problem
- Causes "Current Crowding"
- Base resistance and base spreading resistance both exist and represent different phenomenon
- Strongly dependent upon layout and contact placement
- No good models to include this effect
- Major reason designer does not have control of transistor layout detail in some bipolar processes
- Similar issue does not exist in MOSFET because the corresponding gate voltage does not change with position since $\mathrm{I}_{\mathrm{G}}=0$

A challenge in modeling the BJT

Top View of Vertical npn

Cross-Sectional View

A challenge in modeling the BJT

What can be done about this problem ?
Top View of Vertical npn

Cross-Sectional View

A challenge in modeling the BJT

What can be done about this problem ?
Top View of Vertical npn

- Often double rows of contacts used
- Area overhead can be significant
- Effects can be reduced but current flow paths are irregular
- Remember emitter area is key design variable

MOS and Bipolar Area Comparisions

How does the area required to realize a MOSFET compare to that required to realize a BJT?

Will consider a minimum-sized device in both processes

Stay Safe and Stay Healthy !

End of Lecture 21

